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Abstract: Understanding stellar and galactic evolution relies heavily on the study of star clusters. However, detecting
them and identifying their members from astrometric data remains a challenging task. We introduce  SCLUDAM, a
Python  library  designed  to  detect  star  clusters  and  estimate  membership  probabilities  from  astrometric  data.  It
combines  density  peak  detection  in  multidimensional  histograms  with  a  probabilistic  analysis  pipeline  based  on
HDBSCAN and KDE. Simulated datasets were used to evaluate performance, showing high precision.
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1 INTRODUCTION

Identifying member stars  is  a  key preliminary step for analyzing the mass,  composition, age,  and
kinematics of star clusters [1]. This requires distinguishing between two populations: the cluster and the
surrounding field stars,  and  estimating the probability  of  each star  belonging to  either  group.  A prior
detection phase is usually needed to isolate the cluster from the broader celestial region.

Several open-source tools address parts of this problem, such as SHiP [2], UPMASK [3], ASTECA [4],
CLUSTERIX 2.0 [1],  and pyUPMASK [5],  but  often handle only one task. SCLUDAM (Star Cluster
Detection and Membership Estimation) is a modular, open-source Python library designed to offer a more
complete and customizable analysis flow. It can be used independently or integrated into larger Python
scripts, making it suitable for diverse applications beyond stellar astronomy.

SCLUDAM includes features for querying and downloading GAIA catalog data [6], cluster detection via
star counts, clusterability tests, membership estimation using HDBSCAN and KDE, data simulation, and
plotting tools. It is designed for use with astrometric data, such as sky coordinates, proper motions, and
parallaxes, which are known to be highly discriminative for separating stellar populations [3].

The  query  builder  in  SCLUDAM  targets  GAIA catalogs  due  to  their  precision  and  completeness  in
astrometry  and  widespread  adoption  in  the  field.  It  includes  common  data  quality  filters,  such  as
photometric excess [7] and astrometric noise excess [8].

2 ANALYSIS

The proposed analysis method (Fig.  1)  starts with a data matrix covering a wide celestial  region,
potentially containing an unknown number of clusters. First, density peaks are identified as indicators of
clusters. A sample is then selected from the variable ranges around each overdensity. Statistical tests assess
whether the sample contains cluster structures. If so, membership probabilities are computed, and the final
output is a probability matrix summarizing the results.

2.1 CLUSTER DETECTION

Detecting density peaks is a common task in astronomy, and several methods have been proposed to
address it [9]. In SCLUDAM, a variant of the Star Counts (SC) algorithm was implemented. This method
builds a multidimensional frequency histogram by counting stars in bins and comparing counts to identify
overdensities. SC was chosen for its simplicity, scalability to large datasets, and detection performance
comparable to more complex alternatives [9].

The SCLUDAM implementation introduces several improvements. Low-count bins are first removed to
reduce  histogram  size  without  discarding  relevant  regions.  A mean  smoothing  filter  is  then  applied,
following Alejo, González, and González [10], to estimate the field star density. Subtracting this smoothed
histogram from the original highlights local overdensities. Additionally, a local dispersion measure is used
to  differentiate  potential  clusters  from  fluctuations  in  field  density.  The  final  detection  histogram  is
calculated as H score=(H –H blurred ) /Hσ , where H  is the original histogram, H blurred is the smoothed version
and  H σ is the result of applying a standard deviation filter. As shown in Fig. 2, this score map enhances the



visibility of cluster peaks. Finally, the detection process is repeated for all possible bin shifts, following the
Nyquist spatial sampling criterion [9]. For each peak, the shift that yields the most distinct detection is
retained.

Figure 1: Analysis pipeline.

Figure 2: From left to right: the initial histogram computed from proper motions, and the corresponding
score histogram. In both, the location of the region’s most prominent cluster is indicated

2.2 CLUSTERABILITY TESTS

The process continues by sampling around the obtained density peaks. Various tests are conducted on
these samples to determine if there is actual evidence of clustering structure [11]. After analyzing different
options, three tests considered suitable for this application were implemented: the Hopkins test [12], the
Dip-dist test [13],  and Ripley's k-Test [14, 15].  Generally, these tests assess the existence of evidence
against the null hypothesis that the dataset adheres to the property of Complete Spatial Randomness (CSR).
This property implies that the data correspond to an underlying model of a homogeneous Poisson Point
Process (PPP).

2.3 MEMBERSHIP PROBABILITIES

If the previous tests fail to reject the null hypothesis, the program proceeds to compute membership
probabilities  within the sample.  A two-step algorithm, inspired by the methods of  Sampedro [16] and
Krone-Martins & Moitinho [3], was implemented with several modifications.

First,  initial  labels  are  assigned  to  each  star  using  HDBSCAN  (Hierarchical  Density-Based  Spatial
Clustering of Applications with Noise) [17, 18], an extension of DBSCAN that produces a hierarchy and
selects the final clustering based on group stability. HDBSCAN is well-suited for this task as it clusters
based  on  density,  a  key  criterion  for  identifying  star  clusters,  and  requires  only  one  parameter:  the
minimum group size. This can be estimated from the excess number of stars in the bin where the cluster
was initially detected.

These initial labels are used to estimate the probability density functions (PDFs) of the two populations,
cluster  and field,  via  Kernel  Density  Estimation (KDE).  A distinct  bandwidth matrix  is  used for  each
observation,  based  on  a  plug-in  selector  [19]  and  a  variance-covariance  matrix  constructed  from  the
catalog’s uncertainties and correlations [20]. This ensures that the estimation accurately reflects the data’s
uncertainty structure.



Finally, Bayes’ Theorem is applied to compute posterior membership probabilities.  The end result is a
probability matrix, which can be visualized with SCLUDAM (Fig. 3).

3 RESULTS

To test  the program, 155 simulated datasets  were generated using five astrometric  variables,  with
distribution parameters, uncertainties, and correlations based on real clusters from the catalog by Días et al.
[21]  and  GAIA Data  Release  3  [6].  The program was run  on  these  datasets  to  compute  membership
probabilities, and stars were classified using the Bayes classification rule.

Binary  classification  metrics  (precision,  recall,  F1  score,  and  Matthews  correlation  coefficient)  were
computed, along with the Brier and logarithmic scoring rules for probabilistic forecasts. All metrics range
from 0 to 1, except the logarithmic score, which ranges from −∞ to 1. The program successfully detected
the clusters, and as shown in Table 1, its classification performance is satisfactory.

Figure 3: Results of the membership probability calculation for the same dataset shown in Fig. 2. The plot
on the left shows celestial coordinates, and the plot on the right shows proper motions.

PR EX F1 MCC BSL+ LSR+

µ 0.988 0.992 0.989 0.990 0.993 0.822

σ 0.016 0.011 0.010 0.009 0.011 0.273

Table 1: Means and standard deviations of each metrics calculated on the results obtained for 155
simulated data sets.

4 CONCLUSIONS

Preliminary results indicate that the implemented program performs as expected, achieving an average
precision of 0.988 and recall of 0.992 in the classification based on the calculated probabilities. The library
is  already  available  for  download  [22],  all  its  functionalities  are  documented  [23],  and  the  code  is
accessible through a public repository [24].

As future work, we propose releasing some of SCLUDAM’s functionalities as standalone packages to 
facilitate their reuse in other applications. Additionally, we aim to develop a web-based tool that allows 
users to access the library’s features without requiring Python knowledge.
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