Quickstart ========== Main functionality example ^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../examples/pipeline/dep.py :language: python :linenos: .. image:: ../../examples/pipeline/dep_pmra_pmdec.png Documentation quick guide ^^^^^^^^^^^^^^^^^^^^^^^^^ * Building queries for GAIA catalogues and retrieving data: :class:`~scludam.fetcher.Query` * Detection and membership estimation pipeline: :class:`~scludam.pipeline.DEP` * Detection method: :class:`~scludam.detection.CountPeakDetector` * Clusterability tests: :py:mod:`~scludam.stat_tests` * Clustering method: :class:`~scludam.shdbscan.SHDBSCAN` * Probability Estimation: :class:`~scludam.membership.DBME` * Kernel Density Estimation with per-observation or per-dimension bandwidth, plugin or rule-of-thumb methods: :class:`~scludam.hkde.HKDE` Documentation module guide ^^^^^^^^^^^^^^^^^^^^^^^^^^ * Query building, SIMBAD object searching and data related functionality: :py:mod:`~scludam.fetcher` * Detection and membership estimation pipeline: :py:mod:`~scludam.pipeline` * Detection: :py:mod:`~scludam.detection.CountPeakDetector` * Clusterability tests: :py:mod:`~scludam.stat_tests` * Clustering: :py:mod:`~scludam.shdbscan` * Probability estimation: :py:mod:`~scludam.membership` * Kernel Density Estimation: :py:mod:`~scludam.hkde` * Utils such as GAIA column names interpretation and one hot encoding: :py:mod:`~scludam.utils` * Custom ploting functions: :py:mod:`~scludam.plots` * Utils for R communication: :py:mod:`~scludam.rutils` * Utils for masking data: :py:mod:`~scludam.masker` * Useful distributions for data generation: :py:mod:`~scludam.synthetic`